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Abstract
We analyse a class of non-Hermitian quadratic Hamiltonians, which are of the
form H = A†A + αA2 + βA†2, where α, β are real constants, with α �= β,
and A† and A are generalized creation and annihilation operators respectively.
Thus, these Hamiltonians may be classified as generalized Swanson models.
It is shown that the eigenenergies are real for a certain range of values of
the parameters. A similarity transformation ρ, mapping the non-Hermitian
Hamiltonian H to a Hermitian one h, is also obtained. It is shown that H and
h share identical energies. As explicit examples, the solutions of a couple of
models based on the trigonometric Rosen–Morse I and the hyperbolic Rosen–
Morse II type potentials are obtained. We also study the case where the
non-Hermitian Hamiltonian is PT symmetric.

PACS number: 03.65−w

1. Introduction

The generalization of standard quantum mechanics and quantum field theory to include
complex or non-Hermitian potentials with a real spectrum has been intensively studied during
the last few years [1–4], primarily because of their immense potential for possible applications
in a wide range of phenomena, e.g., nuclear physics [5], scattering theory (i.e. complex
absorbing potentials) [6], field theory [7], periodic potentials [9], quantum cosmology [8],
random matrix theory [10], etc. Initially, the reality of the spectrum was attributed to the
so-called PT symmetry of the system, i.e.

H �= H †, HPT = PT H, (1)

where P stands for parity and T denotes time reversal operators:

PxP = −x, PpP = T pT = −p, T (i.1)T = −i.1. (2)

Such Hamiltonians were found to possess a real and discrete spectrum when PT symmetry is
exact, i.e. the energy eigenstates are also the eigenstates of PT ; if not then PT symmetry is
said to be spontaneously broken and the energies occur as complex conjugate pairs.
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However, it was soon discovered that PT symmetry is neither the necessary nor the
sufficient criterion for the spectrum to be real. Subsequent works showed that the necessary and
sufficient condition for a non-Hermitian Hamiltonian to possess a real and discrete spectrum is
its η-pseudo Hermiticity, such that H are linear operators acting in a Hilbert space (generally
different from the physical Hilbert space), and satisfying [11]

H † = ηHη−1, i.e. H †η = ηH, (3)

where η is a linear, Hermitian, invertible operator. It may be mentioned that for a given
pseudo-Hermitian operator H, the metric operator η is not unique. Furthermore, the pseudo-
Hermiticity of H is equivalent to the presence of an antilinear symmetry, PT symmetry
being the primary example [12]. Conversely, a quantum system possessing an exact antilinear
symmetry is pseudo-Hermitian, and is equivalent to a quantum system described by a Hermitian
Hamiltonian h. Thus H may be mapped to h, by a similarity transformation ρ [11, 13]. For
example, let an eigenvalue (Sturm–Liouville) equation or a differential operator H act in
a complex function space V , endowed with a positive-definite inner product, such that it is
described by the Hilbert spaceH. In such a case there exists a mapping from the non-Hermitian
H to its Hermitian counterpart h, through a similarity transformation ρ [14], i.e.

h = ρHρ−1 (4)

with ρ being the unique positive-definite square root of η:

ρ = √
η. (5)

A relation similar to (4) holds for observables as well. For example, ifOh is an observable in the
Hermitian theory described by h, then the corresponding observable in the pseudo-Hermitian
theory is given by

O = ρ−1Ohρ. (6)

Though known for a long time [15], the idea of pseudo-Hermiticity was revived after the
concept of PT symmetry was introduced a decade ago.

Recently, Swanson analysed the real but non-Hermitian, PT symmetric quadratic
Hamiltonian [16],

H = ωa†a + αa2 + βa†2, α �= β, (7)

where a†, a are the Harmonic oscillator creation and annihilation operators, respectively, for
unit frequency:

a = d

dx
+ x, a† = − d

dx
+ x, (8)

and ω, α, β are real parameters with dimensions of inverse time. It was shown that for α �= β,
though the Hamiltonian H is non-Hermitian, yet the eigenvalues were real and positive for
ω2 � 4αβ. This model has attracted the attention of several workers in recent times, e.g.
[17, 18]. In this work, we focus our attention on the pseudo-Hermitian generalization of the
Swanson model (7), which may not necessarily be PT symmetric. The simplest and most
straightforward generalization would be to consider generalized creation and annihilation
operators A† and A in place of a† and a, of the form

A = d

dx
+ W(x), A† = − d

dx
+ W(x). (9)

The function W(x), called the pseudo superpotential (in analogy with conventional
supersymmetry), is given by

W(x) = −f ′
0(x)

f0(x)
, (10)

where f0(x) is the ground state wavefunction of the Schrödinger Hamiltonian H = A†A. For
the particular case of W(x) being a linear function in x, we get back the Swanson Hamiltonian
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in (7). This is somewhat analogous to the generalization of the Jaynes–Cummings model
to other two level shape-invariant bound state systems [19], applying the principles of
supersymmetric quantum mechanics [20]. Thus, our starting Hamiltonian would be

H = A†A + αA2 + βA†2, α �= β (11)

where α, β are real, dimensionless constants. Obviously, the model given in (11) is non-
Hermitian for α �= β. In particular, our attempt will be to give the general formalism for
solving such a non-Hermitian Hamiltonian, and examine the range of values of the parameters
for which the energies are real. This situation is similar to [16], where real energies were
found only when the parameters satisfied certain constraints. On the other hand since the
Hamiltonian H does not admit real energies for arbitrary values of the parameters, the model
can be termed as conditionally exactly solvable (CES) [21]. We shall restrict our study to η

pseudo-Hermitian Hamiltonians only, as η-pseudo Hermiticity is the necessary and sufficient
condition for the existence of real energies. We shall also find a similarity transformation
ρ, mapping the non-Hermitian Hamiltonian H to the Hermitian one h, for a certain class of
models. It will be shown that H and h share identical energies. It may be mentioned here
that though the existence of η, and hence ρ, is guaranteed, it may not always be possible to
determine the Hermitian counterpart h exactly. For example, the relationship between the
non-Hermitian H and its Hermitian entity h was explored in [22], for the Swanson model
[16] and the igx3 potential. However, in the first case, h turned out to be a scaled harmonic
oscillator, while in the second model h could be constructed perturbatively only. It may be
mentioned here that the operator method was employed in [16], while we work with the
differential equation directly. The simplicity of the present formalism lies in the fact that h
can be determined in a straightforward manner and, secondly, ρ, and hence η, can be found
exactly, for the class of non-Hermitian models considered in this work.

The organization of the paper is as follows. In section 2, we shall give the general
formalism for solving a class of non-Hermitian Swanson model with generalized creation
and annihilation operators. The similarity transformation ρ, between the Hermitian h and
the non-Hermitian H, is established in section 3, while the pseudo-Hermiticity of H is shown
in section 4. We illustrate our results with the help of a couple of explicit examples in
sections 5 and 6, with Hamiltonians based on the trigonometric Rosen–Morse I and the
hyperbolic Rosen–Morse II potentials, respectively. In section 7, a special sub-class of
pseudo-Hermitian Hamiltonians are considered, which are PT symmetric as well. Finally,
conclusions and discussions are given in section 8.

2. Theory

As mentioned above, we shall examine a generalization of the Swanson model , namely, [16]

H = A†A + αA2 + βA†2, α �= β,

where α and β are constants, dimensionless as well as real. Evidently, H is non-Hermitian for
α �= β for any real W(x). With the help of (9), the eigenvalue equation corresponding to (11)
reads

Hψ =
{
−(1 − α − β)

d2

dx2
+ 2(α − β)W

d

dx
+ (1 + α + β)W 2 − (1 − α + β)W ′

}
ψ

=
{

−(1 − α − β)

(
d

dx
− α − β

1 − α − β
W

)2

+
1 − 4αβ

1 − α − β
W 2 − W ′

}
ψ

= Eψ. (12)
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The term
(− α−β

1−α−β
W(x)

)
in the parenthesis takes the form of a complex vector potential and

can be eliminated by a gauge transformation of the form [23]

ψ(x) = eµ
∫

W(x) dxφ(x), with µ = α − β

1 − α − β
, α + β �= 1. (13)

Thus, (12) reduces to the well-known Schrödinger form

hφ(x) =
(

− d2

dx2
+ V (x)

)
φ(x) = εφ(x), (14)

where

V (x) =
(√

1 − 4αβ

1 − α − β
W(x)

)2

− 1

(1 − α − β)
W ′(x) ε = E

1 − α − β
. (15)

It is well known from supersymmetric quantum mechanics [20] that h can always be written
in a factorizable form as a product of a pair of linear differential operators A,A†, as

h = A†A + ε

= − d2

dx2
+ w2 − w′ + ε, (16)

where ε is the factorization energy, and A,A† and w(x) are respectively given by

A = d

dx
+ w(x), A† = − d

dx
+ w(x), w(x) = −d ln ϕ0(x)

dx
. (17)

Here, ϕ0 is the ground state eigenfunction of A†A with energy ε0. It may be mentioned here
that SUSY is said to be unbroken when the ground state energy ε0 = 0.

Evidently, if we can identify the term V (x) in (15), with an exactly solvable potential,
then we can easily find the solutions of h. To this end, for further convenience, V (x) can
be identified with a shape-invariant potential, as using the ideas of supersymmetric quantum
mechanics [20], the raising and lowering operator method of the harmonic oscillator can
be generalized to a whole class of shape-invariant potentials [24], which includes all the
analytically solvable models. To narrow down the class of potentials further, our strategy
would be to write V (x) in (15) in the supersymmetric form w2(x) − w′(x) as given in (16).
This identification enables us to find the energies (E) and the eigenfunctions (ψ) of the
eigenvalue equation in (12). However, this imposes certain restrictions on the permissible
values of α and β. For real energies, supersymmetric considerations require that the term
containing W 2(x) in the expression for V (x) in (15) must be positive. Furthermore, E and
ε should have similar behaviour. Hence, the parameters α, β must satisfy the following
constraints, irrespective of the explicit form of W(x):

α + β < 1, 4αβ < 1. (18)

In addition to the general restrictions imposed on α, β in (18), there may be some more
constraints depending on the particular choice of the model, arising from the normalizability
requirement of the wavefunctions. We shall illustrate our observations with the help of a
couple of explicit examples in the following section. The fact that both the models considered
here are pseudo-Hermitian will be shown in a later section.

3. Similarity transformation between H and h

In this section we shall determine a similarity transformation, mapping the non-Hermitian H
to the Hermitian h [11]. For this purpose we focus our attention on the gauge transformation
ρ relating ψ(x) and φ(x) in equation (13), i.e.

ρ = e−µ
∫

W dx, µ = α − β

1 − α − β
, (19)
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where W(x) = − f ′
0(x)

f0(x)
, f0(x) being the ground state wavefunction of the Schrödinger

Hamiltonian H = A†A. Let ψ(x) be an eigenfunction of H, with the eigenvalue E:

Hψ = Eψ. (20)

Let us now apply the transformation ρ to the above eigenfunction ψ(x), i.e.

φ(x) = ρψ(x), (21)

Then (20) can be written as

Hρ−1φ(x) = Eρ−1φ(x) or ρHρ−1φ(x) = Eφ(x). (22)

Thus φ(x) is a solution of the equation hφ = Eφ with the same energy E as in (20), provided
H is mapped to h by the similarity transformation in (4), namely,

h = ρHρ−1

As we have observed in this work earlier, h is Hermitian, though H is non-Hermitian. Thus,
the similarity transformation ρ given in (19) maps the pseudo-Hermitian Hamiltonian H in
the generalized version of the Swanson model to its Hermitian counterpart h. Furthermore,
this exact form of the similarity operator for this class of models also gives the wavefunctions
in the corresponding Hermitian picture. This will be clarified further by the explicit models
discussed later in this work.

4. Pseudo-Hermiticity of H

We shall show in this section that although H in (12) is non-PT symmetric, it is in fact
pseudo-Hermitian, with respect to a linear, invertible, Hermitian operator η and that it is in
fact the square of the similarity transformation ρ, i.e. η = ρ2.

We start with the eigenvalue equation Hψ = Eψ , where

H = A†A + αA2 + βA†2

= −(1 − α − β)

(
d

dx
− α − β

1 − α − β
W(x)

)2

+
1 − 4αβ

1 − α − β
W 2(x) − W ′(x).

Now let us explore the relationship between H and its adjoint H †, given by

H † = A†A + αA†2 + βA2

= −(1 − α − β)

(
d

dx
+

α − β

1 − α − β
W(x)

)2

+
1 − 4αβ

1 − α − β
W 2(x) − W ′(x). (23)

If we put

η = ρ2 = e−2µ
∫

W dx, µ = α − β

1 − α − β
, (24)

then it can be shown by straightforward calculations that H and H † are related by (3), namely,

H †η = ηH, i.e. H † = ηHη−1.

In other words, H respects the condition for pseudo-Hermiticity [11]. Thus this approach
enables us to determine the exact form of the pseudo-Hermiticity operator η, which in turn is
related to the similarity transformation ρ = √

η.
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5. A model based on trigonometric Rosen–Morse I potential

The trigonometric Rosen–Morse I model [20] is described by the potential

V (x) = A(A − 1) csc2 x + 2B cot x − A2 +
B2

A2
, 0 � x � π. (25)

In the language of supersymmetry, if the potential in (25) can be written in terms of a
superpotential w(x) as

V (x) = w2(x) − w′(x), (26)

then a suitable ansatz of w(x) may be given by

w(x) = −A cot x − B

A
, A > 0, B > 0. (27)

For our model, keeping analogy with the above, we consider the following form of the function
W(x), in the construction of the generalized annihilation and creation operators A and A†

in (9):

W(x) = −A1 cot x − B1

A1
, A1 > 0, B1 > 0. (28)

Obviously, the Hamiltonian in (12) constructed from this W(x) is non-Hermitian (as well as
non-PT symmetric) for α �= β. Substitution of (28) in (13) yields

ψ(x) = e−µ1x sinµ2 xφ(x), (29)

where

µ1 = B1

A1

(α − β)

(1 − α − β)
, µ2 = − A1(α − β)

(1 − α − β)
. (30)

Now, we are interested in real energies only. Additionally, the wavefunctions must satisfy
certain boundary conditions, e.g., well-behaved behaviour at the boundaries x → 0 and
x → π , and normalizability requirement. So µ2 > 0. These impose further restrictions on α

and β, so that they must obey the following condition:

α < β. (31)

Thus (14) reduces to the trigonometric Rosen–Morse I model in (25), with the potential

V (x) = σ csc2 x + 2B1
1 − 4αβ

(1 − α − β)2
cot x

(
A2

1 − B2
1

A2
1

)
1 − 4αβ

(1 − α − β)2
, (32)

where

σ = A2
1(1 − 4αβ) − A1(1 − α − β)

(1 − α − β)2
(33)

so that A and B can be identified with

A = 1

2
±

√
1 + 4σ

2
, B = B1

1 − 4αβ

(1 − α − β)2
. (34)

Since A > 0, only the positive sign is allowed in the expression for A in (34). Moreover,
as is obvious from (32), for the existence of bound states, σ > 0. Since A1 �= 0, hence this
condition requires

A1 >
1 − α − β

1 − 4αβ
. (35)
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Table 1. Some values of the parameters for the model with W(x) as given in (28).

α β α + β 4αβ A1 B1 µ1 µ2 σ A B En

1/4 1/2 3/4 1/2 3/2 1/8 −1/12 3/2 12 4 1 1
4 εn

1/4 2/3 11/12 2/3 1 1/2 −5/2 5 36 6.52 24 1
12 εn

1/8 3/4 7/8 3/8 1 2 −10 5 32 6.18 80 1
8 εn

1/3 1/2 5/6 2/3 1 2 −2 1 6 3 36 1
6 εn

The energy eigenvalues and the corresponding eigenfunctions of (25) are well known [20]:

εn = (A + n)2 − B2

(A + n)2
− A2 +

B2

A2
, n = 0, 1, 2, . . . . (36)

Therefore, (32) has solutions

εn = (A + n)2 − B2

(A + n)2
−

(
A2

1 − B2
1

A2
1

)
1 − 4αβ

(1 − α − β)2
, (37)

where A and B are respectively given in terms of A1 and B1 through (34), and the wavefunctions
are

φn(x) ≈ (y2 − 1)−
(A+n)

2 e( B
A+n

)xP (s+,s−)
n (y), y = i cot x (38)

s± = −A − n ± i
B

(A + n)
. (39)

In (38), P
(s+,s−)
n (y) are the standard Jacobi polynomials [25]. Using (37) and (38) one can

easily obtain the energies and eigenfunctions of the eigenvalue equation in (12), for this
particular model as

En = (1 − α − β)εn (40)

ψn(x) ≈ e{ B
(A+n)

−µ1}x sinA+n+µ2 xP (s+,s−)
n (y), y = i cot x. (41)

Thus, one gets the complete solution of the non-Hermitian Hamiltonian in (11), by reducing
it to the corresponding Hermitian system.

5.1. Choice of parameters

To show that solutions (40) and (41) actually exist, it is necessary to show that there are
parameter values actually satisfying (18), (31) and (35). There may be innumerable such
combinations of α, β, A1 and B1. We show a few possible values of these parameters in
table 1. In each case, the potential is given as in (32), with solutions ψn(x) given in (41) and
energies in (40).

One can check the nature of the non-Hermitian Hamiltonian and the corresponding
Hermitian equivalent for this model. For example, for the values of parameters in the first line
of table 1, the starting non-Hermitian equation (12) is given by

Hψ(x) =
{
−1

4

d2

dx2
+

(
18 cot x + 1

24

)
d

dx
+

33

16
(csc x)2 +

7

16
cot x − 2261

576

}
ψ(x)

= Eψ(x). (42)



10606 A Sinha and P Roy

With the help of the similarity transformation in (19), the above non-Hermitian equation is
transformed to the Hermitian one:

hφ(x) =
{
− d2

dx2
+ 12 csc2 x + 2 cot x − 323

18

}
φ(x) = εφ(x), (43)

where E = 1
4ε, and ψ and φ are related by

ψ(x) = e
1

12 x sin
3
2 x φ(x). (44)

Since equation (43) can be solved exactly, one can use its solutions to find the energies and
eigenfunctions of the non-Hermitian equation in (42).

It is worth mentioning here that a second-order linear differential equation can have
only two linearly independent solutions. For the model discussed in this section, only one
of the solutions is normalizable in the Hermitian picture. So the second solution is not
considered. It can be checked by straightforward algebra that even when they are mapped to
the non-Hermitian picture, the second solution does not have well-defined behaviour at the
boundaries, irrespective of the fact whether the parameters α, β obey the constraints (18) or
not. Furthermore, for the acceptable set of solutions in the Hermitian picture, well-defined
behaviour of the eigenfunctions at the boundaries, and the normalization condition, holds only
when the parameters α, β, etc. satisfy the constraints (18), (27), (31) and (35). Detailed
but simple calculations reveal that the constraints remain unaltered when one moves from the
Hermitian to the non-Hermitian picture. Hence the solutions given here represent the complete
set, in both the Hermitian and the non-Hermitian picture.

6. A model based on hyperbolic Rosen–Morse II potential

As a second non-Hermitian as well as non-PT symmetric example, we shall consider a model
based on the hyperbolic Rosen–Morse II potential, given by [20]

V (x) = −a(a + 1) sech2x + 2b tanh x + a2 +
b2

a2
, b < a2, −∞ � x � ∞

= w2(x) − w′(x), (45)

with the superpotential w(x) of the form

w(x) = a tanh x +
b

a
, b < a2 and a, b > 0. (46)

Analogous to the previous example, to construct the generalized annihilation and creation
operators in (9), we take the following ansatz for W(x):

W(x) = A2 tanh x +
B2

A2
, B2 < A2

2 and A2, B2 > 0. (47)

Proceeding along the lines similar to the earlier example, the eigenvalue equation in (14)
reduces to that of the well-known hyperbolic Rosen–Morse II model in (45), with the potential

V (x) = −χ sech2x + 2B2
1 − 4αβ

(1 − α − β)2
tanh x +

(
A2

2 +
B2

2

A2
2

)
1 − 4αβ

(1 − α − β)2
(48)

provided one makes the identification

a = −1

2
±

√
1 + 4χ

2
, b = B2

1 − 4αβ

(1 − α − β)2
(49)

with

χ = A2
2(1 − 4αβ) + A2(1 − α − β)

(1 − α − β)2
. (50)
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Table 2. Some values of the parameters for the model with W(x) as given in (47).

α β α + β 4αβ A2 B2 µ1 µ2 χ a b En

1/4 1/2 3/4 1/2 3/2 1/4 −1/6 −3/2 24 4.42 2 1
4 εn

1/3 1/2 5/6 2/3 1 1/8 −1/8 −1 18 3.74 3/2 1
6 εn

1/6 1/3 1/2 2/9 3/2 1/2 −1/9 −1/2 10 2.70 1/2 1
6 εn

1/3 1/2 5/6 2/3 1/2 1/8 −1/4 −1/2 6 2 4 1
6 εn

Once again, since a > 0, only the positive sign is allowed in (49) in the expression for a. Thus
the solutions φ(x) of the eigenvalue equation in (14), with the potential in (48), are related to
the solutions ψ(x) of H in (12) by the substitution in (13):

ψ(x) = eµ1x coshµ2 xφ(x), (51)

with

µ1 = B2

A2

(α − β)

(1 − α − β)
, µ2 = A2(α − β)

(1 − α − β)
, α + β < 1. (52)

For the eigenfunction to be well behaved at x = ±∞, µ2 should be negative, so that α < β.
Additionally, |µ2| > |µ1|, which, in turn, requires B2 < A2

2, as already mentioned in (47).
These constraints on α, β, which depend on the explicit form of the model considered, are in
addition to those in (18). The energy eigenvalues and eigenfunctions to (48) are respectively
given by

εn = −(a − n)2 − b2

(a − n)2
+

(
A2

2 +
B2

2

A2
2

)
1 − 4αβ

(1 − α − β)2
, n < a (53)

φn(x) ≈ (1 − y)s+/2(1 + y)s−/2P (s+,s−)
n (y), y = tanh x (54)

where

s± = a − n ± b

a − n
. (55)

P
(s+,s−)
n (y) are the Jacobi polynomials [25], and a, b are given in terms of A2, B2 through (49)

and (50) respectively. The corresponding energies and the eigenfunctions of the eigenvalue
equation in (12) are obtained as

En = (1 − α − β)εn, n = 0, 1, 2, . . . < a (56)

ψn(x) ≈ (1 − y)(s+−µ2)/2(1 + y)(s−−µ2)/2 eµ1xP (s+,s−)
n (y), y = tanh x. (57)

For normalizable functions with real energies, and well-defined behaviour at x → ±∞, the
constraints given in (31) hold here, too.

6.1. Choice of parameters

Analogous to the previous case, here, too, solutions (56) and (57) are acceptable in certain
ranges of the parameters α, β, satisfying (18) and (31) respectively. Many such combinations
are possible. We list a few cases in table 2.

The discussion at the end of section 5, on the completeness of solutions, holds for this
model as well.



10608 A Sinha and P Roy

7. PT -invariant generalized Swanson model

The importance of quantum systems with PT symmetry has already been discussed briefly in
this work. So in this section we consider a particular case of the non-Hermitian Hamiltonian
in (11) which is symmetric under the combined effect of PT . For H to be invariant under
PT symmetry, A and A† should also be PT invariant. For this purpose, following the PT
transformations in (2), the operators A and A† should transform under parity and time reversal
as

P : A(A†) → −A(A†), T : A(A†) → A(A†). (58)

This is possible only if W(x) transforms under PT as

(PT )W(x)(PT )−1 = −W(x). (59)

Incidentally, the pseudo-superpotentials considered in (28) and (47) fail to obey condition (59)
for non-zero B1 or B2.

7.1. Model based on trigonometric Rosen–Morse potential with B1 = 0

If we consider the particular case B1 = 0 in the trigonometric Rosen–Morse model,

W(x) = −A1 cot x, A1 > 0, (60)

then the pseudo-superpotential satisfies condition (59), and the model, in addition to being η

pseudo-Hermitian, is also PT symmetric. In such a case, both B1 and µ1 are zero. Thus,
though the constraints on α, β remain unaltered, the columns B,B1 and µ1 are absent in
table 1. For the parameter values already discussed above, the potential in (32) assumes the
simple form

V (x) = A(A + 1) csc2 x − A2 (61)

with energies

εn = (A + n)2 − A2. (62)

Thus, the solutions of the eigenvalue equation in (12) are explicitly given by

ψn(x) ≈ (sin x)A+n+µ2P (−A−n,−A−n)
n (i cot x) (63)

with energies En = 1
1−α−β

εn.

7.2. Model based on the hyperbolic Rosen–Morse potential with B2 = 0

Analogous to the previous model, for the particular case B2 = 0, both µ1 and b turn out to
be zero, and this non-Hermitian model, too, becomes PT symmetric. The potential in (48)
reduces to

V (x) = −a(a + 1) sech2x + a2, (64)

having real energies

εn = {−(a − n)2 + a2}, n = 0, 1, . . . , < a (65)

and solutions

ψn(x) ≈ (sech x)(s−µ2)P (s,s)
n (tanh x), (66)

where

s+ = s− = s = a − n. (67)

This enables us to find the eigenfunctions and eigenvalues of the original equation in (12).
Once again, the restrictions on α, β are the same as before, namely, conditions (18) and (31),
but the columns under b, B2, µ1 are missing from table 2.
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8. Conclusions

To conclude, we have studied a class of pseudo-Hermitian Hamiltonians (not necessarily PT
symmetric) of the form H = A†A + αA2 + βA†2, where α and β are real, dimensionless
constants (α �= β) and A† and A are generalized creation and annihilation operators
respectively. Incidentally, Swanson studied a similar model [16], although with harmonic
oscillator creation and annihilation operators only. Two explicit examples are considered in
this work, namely, models based on the trigonometric Rosen–Morse I and the hyperbolic
Rosen–Morse II type potentials. It is observed that the eigenenergies are real for a certain
range of values of the parameters α, β. A similarity transformation ρ, mapping the non-
Hermitian Hamiltonian H to a Hermitian one h, is also obtained. It is observed that H and h
share identical energies. Furthermore, the linear operator H is pseudo-Hermitian with respect
to the square of the similarity transformation η = ρ2. This straightforward approach provides
us a simple way of determining the similarity transformation ρ, the metric operator η, as well
as the corresponding Hermitian Hamiltonian h.

As a mathematical interest, one can also start with the pseudo-Hermitian (but non-PT
symmetric) model H1, given by H1 = AA† + αA2 + βA†2, and proceed as shown in this work.
This is possible because of the fact that while in the case of the Swanson model [a, a†] =
constant, the commutator of the generalized annihilation and creation operators A and A†,
respectively, is quite non-trivial: [A,A†] = 2W ′(x).

It would be interesting to repeat this analysis with non-Hermitian complex potentials. As
an example, one may write equation (47) as W(x) = A2 tanh x + i B2

A2
. H, obtained in this way,

is non-Hermitian, complex and PT symmetric, and the procedure is valid for such a case as
well. Another interesting area of study would be to examine the applicability of this procedure
to non-shape-invariant exactly solvable potentials, including QES (quasi-exactly solvable) and
CES (conditionally exactly solvable) potentials.
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